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1 Summary

The present project has been initiated with the aim to produce a solution methodology for high-
order discretization of compressible flow problems that substantially meets industry standards in
terms of efficiency and robustness. The approach is two-pronged: Both discretization methods and
solution techniques for the arising nonlinear systems of equations are addressed.

This report focuses on the results achieved during the most recent no-cost extension of the
project. It is mostly centered around novel discretization methods, in particular hybridized DG
schemes. During the current funding phase, we have further developed our hybridized DG dis-
cretization method for compressible flow simulation.

Hybridization has been identified a potential breakthrough technology allowing one to reduce
the number of globally coupled degrees of freedom (DOFs) very significantly: Using polynomials
or order m with conventional discretization, globally coupled DOFs grow as m3 and m2 in two and
three dimensions, respectively, while for a hybridized discretization this reduces to m2 and m. This
is obviously very significant for both computational efficiency, and storage requirements, which has
been recognized as a major bottleneck for implicit solution methodologies with high-order methods.
Among the highlights that will be exposed in more detailed in the technical section of this report
are

• Implementation and validation of shock capturing capability

• Target-based hp-adaptation techniques

During the most recent funding period, research partially funded by this project has been
presented at

• World Congress on Computational mechanics, July 2012, Sao Paulo, Brazil

• ECCOMAS congress on computational methods in applied sciences and engineering, Septem-
ber 2012, Vienna, Austria

• International Workshop on High-Order CFD Methods, May 2013, Cologne, Germany

An updated list of published results, covering the entire funding period, which acknowledge support
from the current grant is given below:

• hybridized DG schemes, including target-based adaptation via adjoint equation [6, 7, 8]

• Stable high-order Spectral Difference method for hyperbolic conservation laws on triangules [1]

• Multilevel methods for solution of the Euler equations [5];

• Matrix-free solution methods for implicit relaxation schemes in response to the extreme stor-
age requirement of implicit relaxation methods for high-order discretization [5, 3, 2];

• Equivalence between Spectral Difference (SD) and nodal Discontinuous Galerkin (DG) schemes [4];
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2 Governing Equations

We consider systems of partial differential equations

∇ · (fc(w)− fv(w,∇w)) = s (w,∇w) (1)

with convective fluxes fc : Rm → Rm×d and diffusive fluxes fv : Rm × Rm×d → Rm×d, and a state-
dependent source term s : Rm × Rm×d → Rm. Potentially, some of these quantities could be zero.
We denote the spatial dimension by d and the number of conservative variables by m.

2.1 Two-Dimensional Euler Equations

The Euler equations are given in conservative form as

∇ · fc(w) = 0 (2)

with the vector of conserved variables

w = (ρ, ρv, E)T (3)

where ρ is the density, v is the velocity vector v := (vx, vy)
T , and E the total energy. The convective

flux is given by
fc = (ρv, p Id + v ⊗ v,v(E + p))T . (4)

Pressure is related to the conservative flow variables w by the equation of state

p = (γ − 1)

(
E − 1

2
ρv · v

)
(5)

where γ = cp/cv is the ratio of specific heats, generally taken as 1.4 for air.
Along wall boundaries we apply the slip boundary condition

vn(w) := v · n = 0. (6)

We also define a boundary function which satisfies vn(w∂Ω(w)) = 0 as

w∂Ω(w) =


1 0 0 0
0 1− n2

x −nxny 0
0 −nxny 1− n2

y 0

0 0 0 1

w. (7)

At the far-field can be realized with the aid of characteristic upwinding (exposition omitted)

2.2 Two-Dimensional Navier-Stokes Equations

The Navier-Stokes equations in conservative form are given by

∇ · (fc(w)− fv(w,∇w)) = 0. (8)

The convective part fc of the Navier-Stokes equations coincides with the Euler equations. The
viscous flux is given by

fv = (0, τ , τv + k∇T )T . (9)
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The temperature is defined via the ideal gas law

T =
µγ

k · Pr

(
E

ρ
− 1

2
v · v

)
=

1

(γ − 1)cv

p

ρ
(10)

where Pr =
µcp
k is the Prandtl number, which for air at moderate conditions can be taken as a

constant with a value of Pr ≈ 0.72. k denotes the thermal conductivity coefficient. For a Newtonian
fluid, the stress tensor is defined as

τ = µ

(
∇v + (∇v)T − 2

3
(∇ · v) Id

)
. (11)

The variation of the molecular viscosity µ as a function of temperature is determined by Suther-
land’s law as

µ =
C1T

3/2

T + C2
(12)

with C1 = 1.458× 10−6 kg

ms
√

K
and C2 = 110.4 K.

Along wall boundaries, we apply the no-slip boundary condition, i.e.

v = 0 (13)

with corresponding boundary function

w∂Ω(w) = (ρ, 0, 0, E)T (14)

Furthermore, one has to give boundary conditions for the temperature. In the present work we use
the adiabatic wall condition, i.e.

∇T · n = 0 (15)

Combining both no-slip and adiabatic wall boundary conditions, gives a condition for the viscous
flux, namely

fv,∂Ω (w∂Ω,q∂Ω) =

(
0 τ11 τ21 0
0 τ12 τ22 0

)T
. (16)

3 Discretization

3.1 Notation

We tesselate the domain Ω into a collection of non-overlapping elements, denoted by Th, such that⋃
K∈Th K = Ω. For the element edges we consider two different kinds of sets, ∂Th and Γh, which

are element-oriented and edge-oriented, respectively.

∂Th := { ∂K\∂Ω : K ∈ Th }, (17)

Γh := { e : e = K ∩K ′ for K,K ′ ∈ Th; measd−1(e) 6= 0 }. (18)

The first is the collection of all element boundaries, which means that every edge appears twice.
The latter, however, includes every edge just once. The reason for this distinction will become clear
later. Please note that neither of these sets shall include edges lying on the domain boundary; the
set of boundary edges is denoted by Γbh.
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We denote by Πp(D) the set of polynomials of degree at most p on some domain D. We will
need discontinuous function spaces for the domain and the mesh skeleton:

Vh = {v ∈ L2 (Ω) : v|K ∈ ΠpK (K), K ∈ Th}m×d (19)

Wh = {w ∈ L2 (Ω) : w|K ∈ ΠpK (K), K ∈ Th}m (20)

Mh = {µ ∈ L2 (Γh) : µ|e ∈ Πpe(e), e ∈ Γh}m. (21)

Thus, v ∈ Vh, w ∈Wh and µ ∈Mh are piecewise polynomials of degree p which can be discontin-
uous across edges (for v, w) or vertices (for µ), respectively.

Usually, the polynomial degree between elements and interfaces does not vary. In the case
of varying polynomial degrees pK− and pK+ , we choose the polynomial degree for the interface
e = K− ∩K+ as pe = max {pK− , pK+}.

We distinguish between element-oriented inner products (defined with Th) and edge-oriented
inner products (defined with Γh)

(v, w)Th :=
∑
K∈Th

∫
K
vw dx, (v,w)Th :=

∑
K∈Th

∫
K
v ·w dx, (22)

〈v, w〉∂Th :=
∑
K∈Th

∫
∂K

vw dσ, 〈v, w〉Γh
:=
∑
e∈Γh

∫
e
vw dσ. (23)

3.2 Weak Formulation

We can rewrite general convection-diffusion equations as a first-order system by introducing an
additional unknown representing the gradient of the solution

q = ∇w

∇ · (fc (w)− fv (w,q)) = s (w,q) .
(24)

By multiplying the strong, mixed form (24) with appropriate test functions (τ h, ϕh) ∈ Vh×Wh

and integrating by parts, we obtain a standard DG discretization in mixed formulation of the
problem, i.e.:

Find (qh, wh) ∈ Vh ×Wh s.t. ∀(τ h, ϕh) ∈ Vh ×Wh

0 = NDG
h (qh, wh; τh, ϕh) (25)

:= (τh,qh)Th
+ (∇ · τh, wh)Th

− 〈τh · n, ŵ〉∂Th
(26)

− (∇ϕh, fc(wh)− fv(wh,qh))Th
− (ϕh, s(wh,qh))Th

+
〈
ϕh, f̂c − f̂v

〉
∂Th

(27)

+NDG
h,∂Ω (qh, wh; τh, ϕh) +NDG

h,sc (qh, wh;ϕh) . (28)

Here the numerical trace ŵ and the numerical fluxes f̂c, f̂v have to be chosen appropriately to
define a stable and consistent method. Furthermore, the boundary conditions, here denoted by
NDG
h,∂Ω (qh, wh; τ h, ϕh), have to be discretized appropriately.

In contrast to a DG discretization, where the numerical trace ŵ is defined explicitly in terms of
wh and qh, it is treated as an additional unknown in an HDG method. This additional unknown
is called λh and has support on the skeleton of the mesh only In order to close the system the
continuity of the numerical fluxes across edges is required in a weak sense, resulting in a third
equation.
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The weak formulation of the hybrid system, comprised of equations for the gradient qh, the
solution itself wh and its trace on the mesh skeleton λh, is then given by:

Find (qh, wh, λh) ∈ Xh := Vh ×Wh ×Mh s.t. ∀(τ h, ϕh, µh) ∈ Xh

0 = Nh (qh, wh, λh; τh, ϕh, µh) (29)

:= (τh,qh)Th
+ (∇ · τh, wh)Th

− 〈τh · n, λh〉∂Th
(30)

− (∇ϕh, fc(wh)− fv(wh,qh))Th
− (ϕh, s(wh,qh))Th

+
〈
ϕh, f̂c − f̂v

〉
∂Th

(31)

+Nh,∂Ω (qh, wh; τh, ϕh) +Nh,sc (qh, wh;ϕh) (32)

+
〈
µh,

r
f̂c − f̂v

z〉
Γh

. (33)

The terms tested against τ h and ϕh are called local solvers, meaning they do not depend on the
solution within neighboring elements but only on the trace of the solution which is approximated by
λh. The coupling between elements is then introduced by weakly enforcing the normal continuity
of the numerical fluxes across interfaces.

We choose numerical fluxes comparable to the Lax-Friedrich flux and to the LDG flux for the
convective and diffusive flux, respectively, i.e.

f̂c (λh, wh) = fc (λh) · n− αc (λh − wh) (34)

f̂v (λh, wh,qh) = fv (λh,qh) · n + αv (λh − wh) (35)

which can be combined into

f̂c − f̂v = (fc (λh)− fv (λh,qh)) · n− (αc + αv) (λh − wh) . (36)

The stabilization introduced can be given by a tensor; in our work, however, we restrict ourselves
to a constant scalar α = αc + αv which seems to be sufficient for a wide range of test cases.

3.2.1 Boundary Conditions

In order to retrieve an adjoint-consistent scheme, special care has to be taken when discretizing
the boundary conditions (see [7]). The boundary conditions have to be incorporated by using the
boundary states w∂Ω (wh) and gradients q∂Ω (wh,qh), i.e.

Nh,∂Ω (qh, wh; τ h, ϕh) := 〈τ h · n, w∂Ω〉Γb
h

+ 〈ϕh, (fc (w∂Ω)− fv (w∂Ω,q∂Ω)) · n〉Γb
h
.

We would like to emphasize that λh does not occur in this boundary term.

3.2.2 Shock-Capturing

We adopt a shock-capturing term, where an artificial viscosity term, given by ∇ · (ε (w,∇w)∇w),
is used. The viscosity ε is given by the L1-norm of the strong residual ∇ · fc(w) in every element.
In order to accelerate the convergence of this term to zero with mesh refinement, it is premultiplied
with an effective mesh size h̃K := hK

pK
. The latter resembles the actual resolution within an element.

Furthermore, a user-defined factor ε0 is introduced which can be reliably tuned for a rather large
range of test cases. Finally, the artificial viscosity is given by

ε|K :=
ε0h̃

2−β
K

|K|

∫
K
d(w) dx (37)
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where the strong residual is given by

d(w) :=
m∑
i=1

|(∇ · fc(w))i| . (38)

In the discretization of this shock-capturing term the interface integral is neglected so that only
the volume contribution is considered, i.e.

Nh,sc (wh;ϕh) := (∇ϕh, ε (wh,∇wh)∇wh)Th . (39)

This obviates the need for introducing qh in purely convective problems (e.g. the compressible
Euler equations). In the viscous case, where the gradient is explicitly given, ∇wh can be replaced
by qh yielding

Nh,sc (qh, wh;ϕh) := (∇ϕh, ε (wh,qh)qh)Th . (40)

Please note, that this term enters only the local part of the discretization.

3.3 Relaxation

We solve the nonlinear system of equations that defines the HDG method, with a damped Newton-
Raphson method. An artificial time is introduced, and we solve at each iteration index n,(

ϕh,
1

∆tn
δwnh

)
Th

+N ′h [xnh] (δxnh;yh) = −Nh (xnh;yh) ∀yh ∈ Xh. (41)

Please note that by choosing ∆tn →∞, a pure Newton-Raphson method is obtained. Usually the
time step is kept finite for a few initial steps to ensure stability. As soon as the residual is lower
than a certain threshold, i.e. the current approximation x

n
h is thought to be sufficiently close to

the solution xh, we let the time step go towards infinity.

3.4 Hybridization

Using an appropriate polynomial expansion for δqh, δwh and δλh, the linearized global system is
given in matrix form as  A B R

C D S
L M N

 δQ
δW
δΛ

 =

 F
G
H

 (42)

where the vector [δQ, δW, δΛ]T contains the expansion coefficients of δxh with respect to the chosen
basis.

In order to carry on with the derivation of the hybridized method, we want to formulate that
system in terms of δΛ only. Therefore we split it into[

A B
C D

] [
δQ
δW

]
=

[
F
G

]
−
[
R
S

]
δΛ (43)

and [
L M

] [ δQ
δW

]
+NδΛ = H. (44)

Substituting Eq. (43) into Eq. (44) yields the hybridized system(
N −

[
L M

] [ A B
C D

]−1 [
R
S

])
δΛ = H −

[
L M

] [ A B
C D

]−1 [
F
G

]
(45)
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The workflow is as follows: First, the hybridized system is assembled and then being solved for
δΛ. Subsequently, δQ and δW can be reconstructed inside the elements via Eq. (43). It is very
important to note that it is not necessary to solve the large system given by Eq. (43). In fact, the
matrix in Eq. (43) can be reordered to be block diagonal. Each of these blocks is associated to
one element. Thus, both the assembly of the hybridized matrix in Eq. (45) and the reconstruction
of δQ and δW can be done in an element-wise fashion. In order to save computational time, the
solutions to Eq. (43) can be saved after the assembly of the hybridized system and reused during
the reconstruction of δQ and δW .

The hybridized matrix is a nf × nf block matrix, where nf = |Γh| is the number of interior
edges. In each block row there is one block on the diagonal and 2d off-diagonal blocks in the
case of simplex elements. These blocks represent the edges of the neighboring elements of one
edge. Each block is dense and has O

(
m2 · p2(d−1)

)
entries. Please recall that p is the polynomial

degree of the ansatz functions, d is the spatial dimension of the domain Ω and m is the number of
partial differential equations (m = 4 for the 2-dimensional Euler or Navier-Stokes equations). This
structure is very similar to that of a normal DG discretization, whereas the blocks in the latter
have O

(
m2 · p2d

)
entries and thus are considerably bigger for higher polynomial order p.

4 Adaptation Procedure

In the context of adjoint-based (also referred to as target- or output-based) error estimation, one
is interested in quantifying the error of a specific target functional Jh : Xh → R, i.e.

eh := Jh (x)− Jh (xh) , (46)

where xh is the approximation to x in Xh. This target functional can, for example, represent lift or
drag coefficients in aerospace applications. For the derivation of the adjoint-based error estimate
we expand the target functional in a Taylor series as follows

Jh (x)− Jh (xh) = J ′h [xh] (x− xh) +O
(
‖x− xh‖2

)
. (47)

We proceed in a similar manner with the error in the residual, i.e.

Nh (x;yh)−Nh (xh;yh) = N ′h [xh] (x− xh;yh) +O
(
‖x− xh‖2

)
. (48)

As our discretization is consistent the first term Nh (x;yh) vanishes.
Substituting Eq. (48) into Eq. (47) and neglecting the quadratic terms yields

eh ≈ η := −Nh (xh; zh) (49)

where zh is defined by the so-called adjoint equation

N ′h [xh] (yh; zh) = J ′h [xh] (yh) ∀yh ∈ X̃h. (50)

The adjoint solution zh =
(
q̃h, w̃h, λ̃h

)
∈ X̃h represents the link between variations in the

residual and in the target functional.
The global error estimate η can then be restricted to a single element to yield a local indicator

to drive an adaptation procedure, i.e.

ηK :=
∣∣Nh (qh, wh, λh; q̃h, w̃h, 0)

∣∣
K

∣∣ . (51)
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Here, we want to emphasize that, in contrast to the global error estimate, we ignore the contribution
of the hybrid adjoint variable λ̃h. We found that by taking the whole adjoint into account, jumps
across element interfaces were overly penalized. This deserves a more in-depth analysis.

Please note, that the functionals Nh and Jh and their jacobians have to be evaluated in a
somewhat richer space than Xh, namely X̃h ⊃ Xh. Otherwise the weighted residual Nh (xh; zh)
would be identical zero as

Nh (xh;yh) = 0 ∀yh ∈ Xh. (52)

This can be achieved by either mesh refinement or a higher polynomial degree of the ansatz func-
tions. In our setting, especially when using a hierarchical basis, the latter is advantageous with
respect to implementational effort and efficiency.

4.1 Hybridization

In matrix form, the adjoint system (see Eq. (50)) reads as follows A B R
C D S
L M N

T
 Q̃

W̃

Λ̃

 =

 F̃

G̃

H̃

 (53)

Please note, that in our formulation H̃ = 0 as λh is not defined on the boundary and thus the
target functional depends only on wh and qh.

As the overall structure of the adjoint equation is similar to the primal system (see Eq. (45)),
one can also apply static condensation to the adjoint system which then yields its hybridized form:(

N − [ L M ]

[
A B
C D

]−1 [
R
S

])T
Λ̃ = − [ RT ST ]

[
A B
C D

]−T [
F̃

G̃

]
It is interesting to note that the hybridized adjoint system matrix is also the transpose of the

hybridized primal system matrix (for a higher polynomial order). This is very beneficial for the
implementation as the routines for the assembly of this matrix are already available.

The adjoint solution within each element can then be computed with the aid of the adjoint local
system, given by [

A B
C D

]T [
Q̃

W̃

]
=

[
F̃

G̃

]
−
[
L M

]T
Λ̃ (54)

where the matrix is also the transpose of the primal local matrix (see Eq. (43)).

4.2 Marking Elements for Refinement

After having obtained a localized error estimate, we choose a set of elements to be refined. The
aim of our marking strategy is to find the smallest set M⊆ Th such that the error contributed by
this set represents a certain fraction of the total error, i.e.

ηM ≥ (1− θ) ηTH . (55)

The user-defined parameter θ is of course problem dependent. It can, however, be tuned for a big
range of test cases. Please note, that we define the error of any subset of Th as η2

M :=
∑

K∈M η2
K .
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4.3 Choosing between h- and p-Adaptation

The final step in the adaptation procedure is the decision between mesh refinement and order
enrichment. On each element a smoothness sensor is defined as

SK :=
(w − w?, w − w?)K

(w,w)K
(56)

where w? is the element-wise projection of w to the next smaller polynomial space, given by

(ϕh, w
?)K = (ϕh, w)K ∀ϕh ∈ ΠpK−1. (57)

Hence, w − w? represents the higher order components of the solution (see Fig. 1). As we use an
hierarchical basis, this projection is very cheap. By introducing a threshold εS , a decision between
mesh-refinement and p-enrichment can be made, i.e.

SK

{
< εS p-enrichment

≥ εS mesh-refinement
(58)

5 Results

In the following we compare our in-house HDG and DG solvers in terms of degrees of freedom and
runtime. The DG discretization is based on the Lax-Friedrich and the BR2 fluxes for convective and
viscous terms, respectively. Both solvers share the same computational framework, so we believe
that our comparison is meaningful.

We apply both solvers to compressible flow problems, including inviscid subsonic and transonic,
and subsonic laminar flow. In all cases we show results for pure mesh-adaptation (p = 1 . . . 4) and
hp-adaptation (p = 2 . . . 5).

Please note, that we choose the same relaxation parameters for all test cases. If artificial
viscosity is necessary, we use ε0 = 0.2 and β = 0. The parameters for the adaptation procedure
are chosen as θ = 0.05 and εS = 10−6. This set of parameters seems to be robust for both DG and
HDG for a broad range of test cases. In order to approximate the error in drag, reference solutions
on hp-adapted meshes with more than 2 · 106 degrees of freedom (please note, that we refer to
ndofw whenever we speak of degrees of freedom in the following as this is a good measure for the
resolution) are used.

Before we turn our attention to the adaptive computations, we want to compare runtimes for
both methods on a fixed mesh for several polynomial orders. This way, we can a priori learn which
improvement can be expected. In Fig. 2 timings for the assembly procedure and the iterative solver
are given. We show Euler and a Navier-Stokes computation on a mesh with 2396 elements and 3544
interior faces. We used polynomial orders from p = 0 to p = 6. We want to emphasize that the
necessary Newton and GMRES iterations for both HDG and DG were comparable. As there are
more faces than elements, DG is faster than HDG for p = 0 and p = 1. However, already for p = 2
HDG catches up. At p = 6 there is a ratio of 2.5 for the Euler test case and 2.1 for the Navier-Stokes
test case. For the Euler test case it is interesting to note, that the iterative solver dominates the
computational time for DG. For HDG it is the other way around. This has two reasons: firstly, the
assembly is more involved due to the local solves; and secondly, the global system is considerably
smaller for higher polynomial degree. In the case of a Navier-Stokes computation, the DG assembly
takes over the dominating part as the lifting operators are very expensive to compute. The time
for the HDG assembly is also increased which is among other things due to the introduction of the
gradient. For both HDG and DG, the time spent in the iterative solver is comparable for both
Euler and Navier-Stokes.
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(a) Coarse mesh

(b) Adapted mesh

Figure 1: Smoothness sensor for a transonic test case
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Figure 2: Runtime comparison of the hybridized and non-hybridized DG method for a fixed mesh
and varying polynomial degree (Solid: HDG, Shaded: DG).

5.1 Subsonic Inviscid Flow over the NACA 0012 Airfoil

In the first test case, we consider subsonic inviscid flow over the NACA 0012 airfoil which is defined
by

y = ±0.6
(
0.2969

√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1015x4

)
(59)

with x ∈ [0, 1]. Using this definition, the airfoil would have a finite trailing edge thickness of .252 %.
In order to obtain a sharp trailing edge we modify the x4 coefficient, i.e.

y = ±0.6
(
0.2969

√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1036x4

)
. (60)

The flow is characterized by a free stream Mach number of Ma∞ = 0.5 and an angle of attack
of α = 2◦. In Fig. 3 the baseline mesh for the Euler test cases (subsonic and transonic) can be seen.
It consists of 719 elements and its far field is over a 1000 chords away.

Admissible target functionals defined on the boundary for the Euler equations are given by the
weighted pressure along wall boundaries, i.e.

J(w) =

∫
∂Ω
ψ · (pn) dσ (61)

where n is the outward pointing normal. By usingψ = 1
C∞

(cosα, sinα)T orψ = 1
C∞

(− sinα, cosα)T

along wall boundaries and 0 otherwise, the functional represents the pressure drag coefficient cD
or the pressure lift coefficient cL, respectively. C∞ is a normalized reference value defined by
C∞ = 1

2γMa2
∞p∞l. Here, l is the chord length of the airfoil.

In Fig. 4a, a purely h-adapted mesh can be seen. The most refined regions are the leading
and trailing edge. The first is of importance as the flow experiences high gradients towards the
stagnation point. Refinement of the latter is necessary due to the sharp trailing edge and the
slip-wall boundary conditions. As soon as the error in these two regions is sufficiently low, other
elements close to the airfoil get refined as well. For the hp-adapted mesh (see Fig. 4b) the leading
and trailing edge are refined as well. All other regions, however, undergo mostly p-enrichment.
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Figure 3: Baseline mesh with 719 elements for inviscid computations

p 1 2 3 4 hp

tDG/tHDG 1.293 3.799 3.551 3.092 2.209
nnz,DG/nnz,HDG 1.123 2.150 3.248 4.281 4.601

Table 1: Runtime and nonzero ratios for a fixed error level (Ma∞ = 0.5, α = 2◦)

In terms of degrees of freedom, both HDG and DG show similar results. For all computations
it takes some adaptations until the critical regions, leading and trailing edge, are resolved. From
this point on, one can see the benefit of a higher order discretization: the error drops significantly
faster with respect to degrees of freedom and computational time (see Fig. 5 and 6).

In Tbl. 1, we give the runtime ratios for a fixed error level (we always choose the minimum
level attained). For p = 1, HDG and DG are comparable in both runtime and nonzero entries.
From p = 2 on, HDG is faster than DG and needs less memories for the global system. Here, it
is important to note that the adjoint is approximated with p+ 1, so that already for lower orders
HDG is faster.

5.2 Transonic Inviscid Flow over the NACA 0012 Airfoil

Next, we turn our attention to transonic flow which develops more complex features (e.g. compres-
sion shocks) compared to the subsonic regime. The flow is characterized by a free stream Mach
number of Ma∞ = 0.8 and an angle of attack of α = 1.25◦.

In Fig. 7a a purely h-adapted mesh can be seen. The adjoint sensor detects all regions of
relevance for the drag: the upper shock, the leading and trailing edge, and the lower weak shock.
Further refinement is added upstream of the shock, where the adjoint has steep gradients and thus
needs higher resolution. In the case of hp-adaptation, the mesh-refinement is stronger confined to
the shock region and the trailing edge. The other features undergo p-enrichment.

As expected, both methods show a similar accuracy for a given number of degrees of free-
dom. The computations with p = 2 . . . 4 outperform p = 1 but are comparable to each other.
hp-adaptation shows very good results which is due to the accurate prediction of the solution
smoothness (see Fig. 8 and 9).

For this test case, HDG is faster than DG from p = 1 on (see Tbl. 2). The hp-adaptive run
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(a) Pure h-adapation (p = 2)

(b) hp-adapation (p = 2 . . . 5)

Figure 4: Adapted meshes for the subsonic Euler test case (Ma∞ = 0.5, α = 2◦)

Distribution A:  Approved for public release; distribution is unlimited.



103 104 105

10−7

10−5

10−3

ndofw

∆
c D

p = 1

p = 2

p = 3

p = 4

hp

(a) HDG

103 104 105

10−7

10−5

10−3

ndofw

∆
c D

p = 1

p = 2

p = 3

p = 4

hp

(b) DG

Figure 5: Drag convergence with respect to degrees of freedom (Ma∞ = 0.5, α = 2◦)

p 1 2 3 4 hp

tDG/tHDG 2.636 1.607 2.154 2.362 2.628
nnz,DG/nnz,HDG 1.237 1.807 3.098 4.437 2.411

Table 2: Runtime and nonzero ratios for a fixed error level (Ma∞ = 0.8, α = 1.25◦)

is more than 2.5 times faster. The ratio of necessary nonzero entries attains its highest value for
p = 4. In the case of hp-adaptation, this ratio is not as high, as in the shock region a lot of elements
with p = 2 exist.

5.3 Subsonic Laminar Flow over the NACA 0012 Airfoil

Finally, we consider viscous flow in the subsonic regime. The free stream Mach number is Ma∞ =
0.5, the angle of attack α = 1◦ and the Reynolds number Re = 5000. Due to the latter, a thin
boundary layer develops around the airfoil.

The baseline mesh for the Navier-Stokes test case is more refined around the airfoil such that
the boundary layer is correctly captured (see Fig. 10). It consists of 1781 elements and its far field
is over a 1000 chords away.

Admissible target functionals defined on the boundary for the Navier-Stokes equations are given
by the weighted boundary flux along wall boundaries, i.e.

J (w,∇w) =

∫
∂Ω
ψ · (pn− τn) dσ (62)

where n is the outward pointing normal. Here, ψ is nonzero only on wall boundaries. By using
ψ = 1

C∞
(cosα, sinα)T or ψ = 1

C∞
(− sinα, cosα)T along wall boundaries and otherwise 0, the

functional represents the viscous drag coefficient cD or the viscous lift coefficient cL, respectively.
Both the h-adapted mesh (see Fig. 11a) and the hp-adapted mesh (see Fig. 11b) undergo

refinement within the boundary layer and the wake region. The mesh refinement for the hp-
adaptive run is however more restricted to the leading edge region where the boundary layer
develops. Further downstream, p-enrichment is used as soon as the necessary mesh-resolution
is reached.
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Figure 6: Drag convergence with respect to time (Ma∞ = 0.5, α = 2◦)

p 1 2 3 4 hp

tDG/tHDG 2.244 2.572 2.397 2.288 3.122
nnz,DG/nnz,HDG 1.196 2.235 3.472 4.531 3.463

Table 3: Runtime and nonzero ratios for a fixed error level (Ma∞ = 0.5, α = 1◦, Re = 5000)

In terms of accuracy versus degrees of freedom, HDG and DG perform comparably well. The
higher the polynomial degree the more accurate and efficient the computations are for both HDG
and DG (see Fig. 12 and 13). The difference between hp, p = 3 and p = 4 is not as big, though.
This might lead to the conclusion that isotropic mesh refinement is not longer efficiently applicable
in cases involving strong gradients. Hence, the efficiency of the adaptation procedure is rather
limited by the mesh refinement strategy.

Concerning the timings, we can see a similar trend as in the previous test cases (see Tbl. 3).
For p = 1 . . . 4, HDG is more than twice as fast. The hp-adaptive HDG computation is even three
times as fast compared to the DG run. From p = 2 on, the savings in nonzero entries for HDG
become significant.
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(a) Pure h-adaptation (p = 2)

(b) hp-adaptation (p = 2 . . . 5)

Figure 7: Adapted meshes for the transonic Euler test case (Ma∞ = 0.8, α = 1.25◦)
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Figure 8: Drag convergence with respect to degrees of freedom (Ma∞ = 0.8, α = 1.25◦)
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Figure 9: Drag convergence with respect to time (Ma∞ = 0.8, α = 1.25◦)
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Figure 10: Baseline mesh with 1781 elements for viscous computations
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(a) Pure h-adaptation (p = 2)

(b) hp-adaptation (p = 2 . . . 5)

Figure 11: Adapted meshes for the Navier-Stokes test case (Ma∞ = 0.5, α = 1◦, Re = 5000)
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Figure 12: Drag convergence with respect to degrees of freedom (Ma∞ = 0.5, α = 1◦, Re = 5000)
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Figure 13: Drag convergence with respect to time (Ma∞ = 0.5, α = 1◦, Re = 5000)
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